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A method for calculating the temperature fields of the elements of the quantron and 
the structure and characteristics of the complex of programs for automated design 
of solid-state lasers are described 

Automation of the design of solid-state lasers is an effective way to reduce the develop- 
ment time of these devices. Because the thermal conditions in quantrons significantly affect 
the characteristics of laser radiation [1-4] special attention must be devoted to the physical 
and mathematical modeling of heat-transfer processes in quantrons, to the methods of their nu- 
merical realization and corresponding program complexes. These questions are examined in this 
paper. 

There are many works devoted to the calculation of the thermal conditions in quantrons 
and their separate elements [2, 5-8]. However, the need for improving laser technology makes 
it necessary to develop the research further. Pumping systems with natural and combined cool- 
ing, operating in diverse temporal regimes at high temperatures, to obtain which a number of 
new solutions to structural design problems are employed [9, i0], are now widely used. This 
makes it necessary to carry out calculations using several numerical schemes. In addition, 
experience in carrying out engineering calculations shows that further simplifications must 
be made in the procedure of transferring from the parameters of the real structure to the 
starting data for the simulation programs. 

Thermal and Mathematical Models. The most widely used designs of quantrons are described 
in [4, 7, 9, i0]. Figure I shows two typical designs with single-block and field reflectors. 
In [7] the thermal regime of a quantron is studied taking into account the thermal interac- 
tion of different elements, and the corresponding thermal and mathematical models as well as 
the procedure for performing the numerical calculation based on an explicit scheme are pro- 
posed. In this paper we examine a more complicated model, which gives a better approximation 
to the real heat-transfer process. We shall discuss its characteristic features. 

The thermal model of the quantron consists of a system of thermally intercoupled bodies, 
in which heat propagation occurs by conduction. For some bodies, for example, the active 
element, the single-block or hollow reflector, three-dimensional temperature fields are stud- 
ied, while for others, for example, flashlamps, the housing of the quantron, in a number 
of other cases fields with lower dimensionality, down to uniform fields, can be studied. 

The generatrices of all cylindrical surfaces of the elements of the quantron are paral- 
lel to the same straight llne -- the axis of the quantron. They can be divided into two groups, 
depending on the geometric shape of the section of the cylindrical surfaces of the elements 
by a plane perpendicular to the axis of the quantron. The first group consists of elements 
whose section is circular or annular. This group includes active elements, some types of 
tubes enclosing the active element, and hollow reflectors and envelopes offlashlamps. The 
second group consists of elements whose section has a noncanonical shape, for example, single- 
block reflectors. 

The thermal conductivity and specific heat capacity of materials can vary substantially 
as a function of the temperature of the elements of the quantron. For example, the thermal 
conductivity of leucosapphire, from which the single-block reflectors are fabricated, varies 
from 40 W/0n~K) at 20~ to 20 W/(m.K) at 200~ For this reason in the thermal model the 
temperature dependences of the thermal conductivity and sped~fic heat capacity are taken into 
account. 
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Fig. i. Examples of the constructions of quantrons with hol- 
low (a) and single-block (b) reflectors: i) housing; 2) flash- 
lamp; 3) active element; 4) leucosapphire tube; 5) single 
block. 

During the operation of a laser, volume and surface absorption of radiation from the 
flashlamp, described by the multidimensional distributions of the volume and surface heat-flux 
density, occurs in the elements of the quantron. The temperature in the quantron in most cas- 
es is substantially nonstationary. This is determined by the operating mode of the laser in 
series of pulses, in which the time intervals in the presence of laslng pulses alternate with 
the time intervals without lasing. In the thermal model the multidimensional spatial and cor- 
responding time-dependent distributions of the volume and surface heat sources are taken into 
account. 

Heat exchange between the quantron and the surrounding medium and neighboring bodies is 
realized from the exterior side of the housing and the surfaces of other elements protruding 
from the housing. The conditions under which such heat exchange occurs are determined by the 
characteristics of the construction and operation of the optoelectronic system in which the 
quantron is employed. External heat exchange of the quantron is analyzed based on the corres- 
ponding thermal and mathematical models with the help of the method of stage-wise modeling 
[ii, 12]. This approach permits taking into account in the analysis of the internal heat 
transfer in the quantron the external thermal effects fixed through the corresponding spatial- 
temporal distributions of the heat fluxes, heat transfer coeffllcents, and temperatures of the 
surrounding medium and bodies. In this work we analyze only the internal heat transfer in the 
quantron. 

Heat is transferred between the elements of the quantron by heat conduction, radiation, 
and convection. The contribution of each mechanism to the total heat transfer depends strong- 
ly on the construction and the method employed for cooling the quantron. 

Heat transfer hy means of conduction makes an important contribution to heat transfer 
between elements in quantrons without forced cooling with hollow or single-block reflectors, 
when there Is no convection in the space between elements. This condition holds for air gaps 
with a thickness of the order of 1-2 mm and smaller, which occurs in most cases. In describ- 
ing this heat transfer in narrow annular channels the heat flux density vector is assumed to 
be perpendicular to the surfaces of the elements, while heat transfer along the channel is not 
taken into account. When taking into account the heat transfer by means of conduction in 
channels with a complex shape, characteristic for hollow reflectors, the corresponding multi- 
dimensional heat-conduction equation for a stationary gaseous-medium is employed, 

When taking into account heat transfer by radiation the surfaces of the elements are as- 
sumed to be grey, diffusely reflecting, and emitting. In cavities with complex shapes, char- 
acteristic for hollow reflectors, it is described in the three-dimensional approximation [13]. 

The form of the model of convective heat transfer depends on the method employed for 
cooling the quantron. In systems with forced cooling the coolant usually flows in annular 
channels, arranged around the heating elements, in the direction of the axis of the quantron. 
In this case the time-dependence of the temperature of the coolant at the inlet to the channel 
is assumed to be fixed. It is determined from a calculation of the entire cooling loop of 
the quantron. Heat exchange between the coolant and the surface of the element is described 
on the basis of the approximation of the combined problem [20] under the condition that the 
coefficient of heat transfer and the temperature of the coolant change only along the length 
of the channel. In many cases it may be assumed that the change in the coolant temperature 
is linear in the direction of motion of the coolant. In describing free-convectlon heat 
transfer in the cavity of the reflector multidimensional distributions of the heat-transfer 
coefficients are employed. Calculations show that in this case the relations for heat trans- 
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fer in an unbounded space can be employed to determine the heat-transfer coefficients, At the 
same time the temperature of the gaseous medium, which appears in these relations, is deter- 
mined from the condition of heat balance, written down for all sections into which the surfaces 
of the elements are divided. 

Thus the mathematical model consists of a system of nonlinear multidimensional nonstation- 
ary heat-conduction equations for the elements of the quantron: 

OTi = div(~q(Ti)  g r a dT i )  + q~i(x, r), (1) 

Ti]~=o = Toz(X), i =  1, 2 . . . .  , m, (2) 

and the energy equations for the coolants moving in the channels: 

0Tj ( OTj *Vz ] =Xcc~(Z, r~, T~)(Ti--Ti)Li, 
OjCi ( T  j) \ O'r: ' ---ff-Z'-Z I i (3) 

T~l,=o = Toj(Z), Tj ~-Tiin(T), ] m + 1, m + 2, . . .  , l, (4) 

where the z axis coincides with the axis of the quantron. 

The boundary conditions for (I) have the form 

--)~,(T,) OT, = ~ r T1, T2 . . . . .  T~)(Ti--T~)q- 
0 F t  l~i " v = l  

v~-~i (5) 

T4 4 __ __ -{- [ [5s xv)( z - -Tv)dS~ ,+  ~ cz.,(z, Tz, T.)(T, Tv) + ~ ~z.,(x~, T,, rv)(T, T.,)+qs,(7~, T), 
~ J  

x :=  1 S v v=r , ' z_  1 v = / -  1 

where the first and second sums on the right side describe, respectively, the convective-con- 
ductive and radiant heat transfer between the elements of the quantron; the third sum describes 
convective heat transfer between the surfaces of the elements and the coolants; and, the fourth 
sum describes the external heating effects on the elements of the quantron, determined at pre- 
ceding stages of the analysis of the thermal state of the optoelectronic system. In many cas- 
es the surfaces of some elements of the quantron are coated with film heaters, with whose help 
the temperature of these elements can be controlled. The last term on the right side of Eq. 
(5) takes these heaters into account. 

Numerical Computational Procedure and the Structure of the Program Complex. Inadequate 
attention is devoted in theliterature [14, 15] to the methods employed for constructing the 
difference equations for systems of the type (1)-(5), their analysis, and methods of solution. 
Therefore, the procedure for determining the type of difference scheme is based largely on 
computer experiments. As a result of such studies explicit and mixed schemes were selected 
and implemented [16, 17]. In the mixed scheme the temperature field of each element and cool- 
ant is found using the implicit scheme, while information about the thermal effect of the bod- 
ies is taken from the preceding time layer. The desirability of employing explicit and mixed 
schemes is also confirmed by calculations performed in [16, 17]. With the help of such cal- 
culations it is possible to select an explicit or mixed scheme for a given specific case, tak- 
ing into account the construction of the quantron and the thermophysical properties and geo- 
metric dimensions of the elements and the values of the heat-transfer coefficients, 

The use of such schemes made it possible to employ the modular principle for the construc- 
tion of the computing programs for specific constructions of quantrons [18], for which these 
programs are assembled from prepared modules of three types. 

Modules of the first type implement the explicit and implicit schemes for solving heat- 
conduction equations, corresponding to separate elements of the quantron using different spa- 
tial grids, and an implicit scheme for solving the energy equation. The quantron is divided 
along the entire axis by planes perpendicular to it. For elements whose sections by a plane 
perpendicular to the axis of the quantron have a canonical shape, in this section the cor- 
responding regular grid in rectangular or cylindrical coordinate system or an irregular tri- 
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angular grid is employed. If the shape of the cross section of the element is not canonical, 
An irregular triangular grid is employed and the spatial operators are approximated based on 
the method of finite elements [19]. In the calculation based on the implicit scheme for bod- 
ies with a canonical shape a locally one-dimensional scheme was employed [15], while in the 
case of an irregular grid the separation was made only along the coordinate varying along the 
axis of the quantron. 

Modules of the second type implement algorithms for taking into account the thermal in- 
teraction of the elements of the quantron by means of radiation and convection. For example, 
for ~adiative heat exchange in cavities with complex shapes the resulting radiant heat flux 
qkZ iJ b~$ween the Z-th and k-th sections of the surfaces of the i-th and j-th elements AS,(i) 
and AS~ 3) is calculated according to the formula [20] : 

if ~} 
: -- (ri) )AS  (6) 

where the reduced emissivities e ij are found by solving the corresponding system of alge- 
re Ik 

bralc equations. In the corresponding program module the irradiance coefficients, the reduced 
emissivities, and the resulting heat fluxes are calculated for fixed spatial separation and 
configuration of the cavity. For heat transfer by convection in cavities with a complex shape 
the resulting convective, heat flux q, (1) to the k-th element of the surface of the i-th elem- 
ent of the quantron ASk(1) is calculated using the formula 

qr r (Tf) --  Te) AS~ ), (7) 

where T c is determined from the system of algebraic equations 

( r f  - - -  O,  ( S )  
i = l  h = l  

and ~ik are determined from the corresponding crlterional relations [21, 22]. In the corres- 
ponding program module the heat-transfer coefficients are calculated, the system (8) is solved, 
and the resulting convective heat fluxes are determined for a fixed spatial partitioning and 
configuration of the cavity. The program modules which take into account the radiative and 
conductive heat transfer in narrow annular channels, and heat transfer under conditions of 
forced convection, fulfill analogous functions. 

Modules of the third type are used to automate the separate stages of the transition from 
the parameters of rsal structures to the output data of the programs of the first and second 
types. These modules include, for example, programs which automatically construct the spatial 
grid for the transverse sections of noncanonically shaped elements. Index matrices, employed 
in the modules which implement the calculation of the temperature fields of these bodies using 
the method of finite elements, are formed in them. 

In using the program complex described above to model the thermal regimes of quantrons 
the time-dependent and spatial distributions of the volume and surface heat sources are as- 
sumed to be given and enter into the starting data. The spatial distributions are calculated 
with the help of a special complex of programs, based on the use of the Monte Carlo method 
[23]. The time-dependent distributions are determined based on the procedure described in 
[24]. 

Computational Results. The complex was used to analyze the thermalregimes in designing 
quantrons with different constructions -- with a hollow reflector, with a hollow reflector and 
the active element placed in a tube made of a material with a high thermal conductivity, with 
a single-block reflector, etc., using different active media (glass activated with neodymium, 
yttrium--aluminum garnet, gadolinium--scandium--gallium garnet, potasslum-gadolinium tungstenate, 
etc.) -- for different temporal operating states. Figure 2 shows as an example the temperature 
distribution in the middle section of the active element of two quantrons. 

At the same time, based on the results of calculations of time-varying three-dimensional 
temperature fields of the elements in quantrons the decrease in the gain in the active medium, 
the thermooptical distortions arising in the active element, the perturbations they introduce 
into the optical resonator and, finally, the changes in the output energy of the laser were 
determined [3]. 
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Fig. 2. Temperature field in the middle section of an yttriu=~ 
aluminum garnet active element in a quantron with a circular hol- 
low reflector (a) and a potassium-Badolinium tungstenate garnet in 
a quantron with an elliptical hollow reflector (b). The flash- 
lamp is on the left. The lines show the isotherms and the num- 
bers are the temperatures in ~ 

Important characteristics of any program complex, intended for use in automated design 
systems, are the mean computing time and also the mean time required for the user in preparing 
the starting data for one variant of the calculation. Experience in ~sing the program complex 
described showed that the average time required for calculating a nonstationary temperature 
field for a quantron with the typical construction with a numerical error of 4-5%, determined 
by Runge's rule [25], equals 5-10 min on the ES-I045 computer. Preparation of the starting 
data requires on the average 15 min. The comparatively small amount of engineering and compu= 
ter time required for the calculation with the help of the program complex developed and the 
satisfactory agreement of the computational results with the experimental data [26] enable 
recommendation of the models developed, the numerical computational procedure, and the program 
complex for use at the computational stage in the design of solld-state lasers. 

NOTATION 

0, c, and ~, density, specific heat capacity, and thermal conductivity of the material 
of an element in the quantron or coolant; T, temperature field of an element in the quantron 
or coolant; x = x, y, z, spatial coordinates; ~, time coordinate; qv and qs' volume and surface 
heat flux density in elements of the quantron; To, starting temperature distribution in an 
element of the quantron or coolant~ vz, velocity of the coolant along the z axis; L, ratio of 
the perimeter of the cooling channel to its cross-sectional area; T._, temperature of the cool- 

. U �9 

ant at the inlet to the cooling channel, n is the normal to the surface of the element, F, 
surface of the element; ~k' heat-transfer coefficient between the elements of the quantron; ~, 
coefficient of heat transfer from an element of the quantron to the coolant or to the surround- 
ing medium~ 8Z, a coefficient describing the heat transfer by radiation between the elements 
of the quantron; S, area of the surface of an element of the quantron; o, Stefan--Boltzmann 
constant; ~, irradiance coefficZent; m, number of elements in the quantron; Z, total number 
of elements in the quantron and coolants; N, number of sections into which the surface of an 
element of the quantron is partitioned, Indices: i, v, number of an element of the quantron; 
j, number of an element in the coolant. 
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NUMERICAL SOLUTION OF AN INVERSE PROBLEM IN NONSTATIONARY MASS TRANSFER 

IN A MULTICOMPONENT MIXTURE 

A. A. Antonyuk, R. M. Marutovskii, UDC 66.016.33:541,183:519.,6 
and N. N. Redkovskli 

Discrepancy-functional minimization is used to show that there is considerable in- 
teraction between adsorbed components during transport in a porous material. 

A major problem in the theory of heat and mass transfer concerns methods of solving in- 
verse problems, which have been classified in [1-3]; one needs numerical values for the kin- 
etic coefficients to simulate and optimize mass-transfer equipment, To determine these for 
mixtures, it is necessary to solve for kinetlc-parameter matrices 14]. One measures the con- 
centrations averaged over the volumes of the porous particles, which are dependent on run 
time (kinetic curves) when one examines nonstationary transfer in sorbents and catalysts. 
An inverse problem in mass transfer for a binary mixture can [5] be handled by determining 
the elements in the coefficient matrix by using sections of the kinetic curves. Here we con- 
sider a method of solving for nonstationary mass transfer for an n-component mixture, which 
is based on minimizing the discrepancy functional, where it is shown that there is a consid- 
erable interaction between the components within the material, 

The mass flux densities are put as [6] 

j =_Dva (I) 

We consider the simplest case of boundary conditions of the first kind. The equations 
for nonstationary mass transfer for an n-component mixture subject to constant values for the 
elements of matrix D may be written as 
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